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Abstract
The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular 
assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and 
post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack 
of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the 
forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach 
formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For 
this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence 
of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems 
that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel 
method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption 
and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the 
investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics 
with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.

Keywords Left ventricular assist devices (LVAD) · Cardiac implantable electronic device (CIED) · Driveline infections 
(DLIs) · Foreign body reaction (FBR) · Surface topography · Biofilm

Introduction

The emergence of digital technology catalyzes a generation 
of medical breakthroughs and offers unprecedent access to 
the management of human disease (Topol 2019). Along this 

line, the widespread use of digital hardware, such as smart 
phones and wearable sensors, has inspired significant inno-
vations on the design of novel diagnostic solutions (Chan-
drasekhar et al. 2018; Yang et al. 2020). On a similar track, 
harnessing the strengths of cutting-edge technologies has the 
potential to benefit thousands of patients receiving implanted 
medical devices (IMDs) with therapeutic electromechani-
cal function, such as cardiac implantable electronic devices 
(CIEDs) and left ventricular assist devices (LVADs). The 
latter type of medical intervention poses a non-trivial chal-
lenge which primarily pertains to the development of suit-
able power transfer systems for supporting the requirements 
of different IMDs, Fig. 1. Comparing commonly used IMDs 
in patients with cardiac problems, LVADs consume signifi-
cantly higher power (~ 7 W) than defibrillators  (10–3 W) and 
pacemakers  (10–6 W) (Ben Amar et al. 2015). For this rea-
son, the use of well-insulated transcutaneous metallic wires 
(e.g., drivelines) is the only available commercial solution 
that is currently applied with LVADs. On the contrary, wire-
less (e.g., flexible electronics: ~  104 S/m) and less invasive 
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solutions (e.g., conductive hydrogels: ~  10–1 S/m) for power 
transfer are not sufficient to support LVADs due to the sig-
nificantly lower electrical conductivity compared to metal-
lic wires (~  107–108 S/m) (Kim et al. 2011; Sirivisoot et al. 
2014).

LVADs, which are on the spotlight of this review, expose 
patients to the risk of infection and foreign body reaction as 
part of short- and long-term pathological responses, respec-
tively (Zinoviev et al. 2020). A leading cause of infections 
in LVADs is the use of percutaneous LVAD drivelines to 
convey power and information through the human body. 
Although wireless solutions of power transfer may be reso-
lutive, their clinical implementation faces technical chal-
lenges and is still far from becoming part of the mainstream 
clinical practice. Therefore, power drivelines remain the 
most reliable strategy to cover the power requirements of 
LVADs, urging the need to generate new driveline systems 
with improved biological compatibility and optimal power 
characteristics.

Here, motivated by the cause-to-effect relationship 
between percutaneous LVAD drivelines and the risk of 
infections, we present different in vitro and in vivo models 
of the skin that may be used to identify critical factors for the 
progression of infections. Furthermore, we review a num-
ber of alternative technological solutions for the effective 
and less destructive transfer of power in IMDs. Finally, we 
propose the creation of conductive skin systems with high-
conductivity components as an innovative solution towards 
the risk-free and long-term integration of power and signal 
drivelines connected to IMDs. Altogether, this essay pro-
vides a critical perspective on the current challenges and 
opportunities associated with power transfer in the human 

body, with the objective of drawing new directions on the 
design of biologically compatible and infection-free IMDs, 
such as LVADs.

Clinical challenges associated 
with the power transfer of LVADs

LVADs are implanted in adult patients with heart failure 
(HF) to restore blood perfusion back to physiological levels. 
About half of the LVADs implanted nowadays serve as des-
tination therapy (Kirklin et al. 2017), while the rest address 
the following treatment strategies: bridge to transplantation, 
bridge to candidacy and bridge to recovery (Ponikowski 
et al. 2016). Together with the increasing number of patients 
with end-stage HF and the shortage of donors for organ 
transplantation, the advancements in LVAD technology led 
to the preferential use of LVADs in the form of destination 
therapy. Current state of the art LVADs include an implanted 
pump connected to an external battery and a controller via 
a well-insulated percutaneous driveline (Schmid Daners 
et al. 2017). However, LVADs can also become subject to 
major complications, including driveline-specific infections 
(DLIs) (Hannan et al. 2019). Relevant epidemiological stud-
ies reveal at least one incidence of DLI in the first year of 
LVAD support for 19% of the patients, while the peak of 
incidence occurs at approximately 6 months after implanta-
tion (Goldstein et al. 2012; Pavlovic et al. 2019).

DLIs are associated with the full skin injury and the 
ongoing percutaneous presence of LVAD drivelines that 
together impair the process of wound healing. Skin is com-
posed of several layers with distinct contributions into the 
process of wound healing (Kwon et al. 2018; Rodrigues et al. 
2019). The epidermis contains a stratified epithelium that 
mediates barrier function against external environmental 
factors. Anchored to that, the fibroblast-rich dermis has a 
substantial role into the mechanical properties of the skin 
tissue. Wound healing is a multi-step process that involves 
blood clot formation, inflammation, re-epithelialization, tis-
sue granulation, neovascularization, and tissue contraction 
(Rousselle et al. 2019; Shaw and Martin 2009). During re-
epithelialization, keratinocytes migrate towards the injured 
tissue to re-establish a new epithelium (Bamberger et al. 
2005). However, the implanted LVAD drivelines occupy the 
center of the wound, altering the biomechanical and bio-
chemical features of the injured site in a manner that burdens 
keratinocyte migration from the margins to the center of 
the scission (Pensalfini et al. 2018; Wahlsten et al. 2019; 
Wietecha et al. 2020).

In addition to that, previous studies suggest a no-slip con-
dition between keratinocytes and LVAD drivelines, which 
promotes distal epidermal growth and subsequently sulcus 
formation around the drivelines (Großhauser et al. 2015). 
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Fig. 1  Different IMDs and power transfer systems combined for the 
therapeutic benefit of human patients. Increased transparency of the 
red arrow reflects IMDs with lower power consumption. On the right 
side, selected power transfer systems to support the function of IMDs. 
Increased transparency of the blue arrow corresponds to power trans-
fer systems with lower electrical conductivity. Currently, drivelines 
composed of insulated metallic wires are the only conductive system 
which is compatible with LVADs
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In effect of that, the weak sealing between epidermis and 
drivelines gives rise to a durable breach for biofilm forma-
tion of fungal and microbial composition, which can fur-
ther migrate into the skin causing  DLI (Qu et al. 2020). 
Yet,  how the intercellular crosstalk between keratinocytes 
and dermal fibroblasts affects wound healing in the presence 
of percutaneous drivelines remains unclear. In this direction, 
forthcoming studies with systematic control on driveline 
motion, surgical details, and patient health will be critical 
to investigate the underlying cellular interactions, identify-
ing new therapeutic targets against DLIs (Dean et al. 2015; 
Zierer et al. 2007).

Clinical protocols against driveline 
infections (DLIs)

In the clinical context, LVAD infections are distinguished 
in three different groups: LVAD-specific, LVAD-related 
and non-LVAD-related infections. The DLIs, which is a top 
interest of this review, together with infections of the adja-
cent tissue belong to the category of LVAD-specific infec-
tions. The progress and the severity of DLIs are correlated 
with the anatomical position of the affected tissue compart-
ments. Specifically, depending on whether the muscle fascia 
or the deeper muscle tissue is involved (Fig. 2), the DLIs 
are further split into superficial and deep DLIs, respectively 
(Hannan et  al. 2011). The diagnosis of LVAD-specific 
infections, and particularly superficial DLIs, is based on the 

detection of several clinical symptoms (erythema, purulent 
discharge, and increased temperature) together with micro-
biological, echocardiographic and computed tomography 
studies (Hannan et al. 2011). Moreover, clinical examina-
tions of white blood cells scintigraphy (de Vaugelade et al. 
2019), positron emission tomography-computed tomogra-
phy (de Vaugelade et al. 2019; Ten Hove et al. 2021) and 
the combination of fluorescence in situ hybridization and 
polymerase chain reaction (Schoenrath et al. 2020) ascertain 
additional diagnostic power to distinguish between superfi-
cial and deep infections.

Post‑operative protocols

The majority of DLIs coincide with the presence of Gram-
positive and Gram-negative bacteria like Staphylococcus 
aureus and Staphylococcus epidermidis, while the strain 
of Pseudomonas aeruginosa leads the Gram-negative cat-
egory. Even rarely, fungal, viral and protozoal pathogens 
may also trigger DLIs with life threatening effects (Hannan 
et al. 2019; Qu et al. 2021; Zinoviev et al. 2020; Maly et al. 
2014). The standard treatment against DLIs combines anti-
infective therapeutic protocols with specialized procedures 
of wound therapy and surgical intervention. A challeng-
ing factor against the elimination of bacterial pathogenesis 
comes from biofilm formation at the interface of drivelines 
with the injured skin (Fig. 2b). Correct evaluation of the bio-
film’s age is critical for the selection of anti-infective agents 

Fig. 2  Percutaneous LVAD drivelines may be subject to infections. 
(a) Pre-implanted LVAD driveline with the velour section immersed 
in the container. (b) Implanted LVAD driveline through the human 
skin. The lower image depicts an infection-free exit of the percuta-
neous LVAD driveline. (c) Biofilm formation at the upper layers of 
the human skin may lead to superficial infection sparing the mus-

cle fascia. The lower image depicts a patient with superficial infec-
tion. (d) Bacterial migration into the lower layers of the skin may 
lead to deep infection involving the muscle fascia. The lower picture 
depicts a patient with deep driveline infection. The cartoons of this 
review were created with the assistance of Biorender.com
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that can either eradicate or suppress pathogen distribution 
(Trampuz et al. 2020).

Another possible route to tackle  severe DLIs is the 
treatment by means of surgical interventions, such as 
driveline relocation with wound debridement (Kusne 
et al. 2017; Pieri et al. 2016; Trampuz et al. 2020). Equally 
critical is the practice of meticulous wound care protocols 
that are well adjusted to the needs of the different stages 
of DLIs. The progression of DLIs and the characteristics 
of percutaneous wounds are strong determinants of the 
selected therapeutic protocol, that  can involve wound 
dressing in combination with supplementary treatments, 
such as negative pressure vacuum-assisted closure therapy, 
cold atmospheric plasma, and antibiotic beads (Bernhardt 
et al. 2020; Haddad et al. 2020; Hilker et al. 2017; Kilo 
et al. 2020; Sezai et al. 2020). In many cases however, the 
therapeutic benefits are decapacitated by relapsing infec-
tions related to biofilm persistence. Against this adversity, 
additional therapeutic support may include bacteriophage 
treatment, long-term suppression antibiotic therapy, and as 
a last option device exchange (Kusne et al. 2017; Mulzer 
et al. 2020).

Preventive measures

To avoid the post-operative escalation of DLIs, the clinical 
procedures have also adopted an array of preventive meas-
ures. A key element for the prevention of LVAD infections 
is the administration of perioperative anti-microbial proph-
ylaxis, similar to other types of cardiac surgery (Kusne 
et al. 2017). This treatment is further combined with sur-
gical protocols, such as the double tunneling method to 
inhibit ascending DLIs (Fleissner et al. 2013; Wert et al. 
2018). Other strategies focus on trauma prevention and 
its impact on the risk of infection. To this end, surgical 
sutures are regularly applied to stabilize drivelines at 
the exit site, limiting the extend of injury from potential 
mechanical motions (Kusne et al. 2017).

On the sidelines, the management of post-operative 
complications, including acute infections, is starting to 
be largely recognized and has led to the introduction of 
protective envelopes which support the controlled release 
of antibiotics for at least 1 week after deployment (Biffi 
2019). Although this strategy has not been tested in LVAD 
protocols, the use of drug-eluting polymeric envelope 
around CIEDs in a large clinical trial was proven more 
effective compared to simple flushing of the generator 
pocket and ensuing systemic treatment (Krahn et al. 2018; 
Tarakji et al. 2019). Based on these results, novel strate-
gies for the use of antibiotic envelopes in combination 
with neurostimulators (e.g., deep brain, sacral nerve, vagus 

nerve stimulators) and LVADs shall be subject to further 
studies to gain indications relevant to driveline protection.

Skin models for the study of driveline 
infections

In vitro models of human skin

The percutaneous implantation of LVAD drivelines comes 
together with a series of mechanical and chemical stress-
ors that can facilitate the progression of DLIs. However, 
the mechanisms that drive cellular responses around the 
drivelines elude our understanding due to the shortage of 
available patients for exploratory mechanistic studies. To 
this end, in vitro systems that recapitulate critical con-
ditions of skin physiology may be used to uncover the 
mechanisms downstream of driveline-generated stressors. 
A large number of in vitro skin models are built through 
a bottom-up approach (Randall et al. 2018), where an ini-
tially formed dermal scaffold supports the organization 
of an upper epidermal layer. This artificial epidermis is 
regularly comprised of keratinocyte cells, attaining a plat-
form to investigate various mechanisms, such as wound 
healing and regeneration (Deshayes et al. 2018). Similar 
in vitro systems can also host studies for the evaluation of 
new biocompatible and infection-resistant percutaneous 
devices (Bolle et al. 2020a, b) or to simply uncover the 
individual effects of different bacterial strains (Jahanshahi 
et al. 2020; Koval et al. 2019; Popov et al. 2014; Zino-
viev et al. 2020). In spite of this potential, the majority of 
in vitro skin models are deprived of an efficient circulatory 
network, hindering its exposure to biologically relevant 
immune responses (Kim et al. 2019; Miyazaki et al. 2019; 
Saleh and Bryant 2017). In contrast, natural skin explants 
of human and animal origin sustain an organotypic com-
plexity which is associated with pathological responses, 
such as foreign body reaction (FBR) and infection (Del-
lambra et al. 2019; Griffin et al. 2020; Maboni et al. 2017; 
Rakita et al. 2020; Schaudinn et al. 2017; Torres et al. 
2020; Yoon et al. 2019). Future development in this direc-
tion shall include the implantation of percutaneous drive-
lines in perfusable skin explants to further elucidate the 
dynamic biological signals that instruct DLIs (Moniz et al. 
2020; Ternullo et al. 2017).

Animal models

In vivo models have been largely used to capture the pro-
gression of DLIs and FBR in pre-clinical studies (Don-
dossola et al. 2016; Greenfeld et al. 1995; Isenhath et al. 
2007; Jarvik et al. 1998; Toba et al. 2011; von Bayern 
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et al. 2008; Zierer et al. 2007). The selection of a particu-
lar animal model is influenced by several factors, such as 
the driveline system, the conditions of animal handling, 
the investigated bacterial strain, and the desired standards 
for physiological resemblance to the human skin (Carney 
et al. 2009; von Bayern et al. 2008). In this case, large ani-
mals are usually preferred for the exploration of promising 
LVAD technologies, especially due to adequate surgical 
space in favor of animal comfort and surgical precision 
(Carney et al. 2009; Kitao et al. 2011; McGee et al. 2014; 
Monreal et al. 2014; Tuzun et al. 2007; Weiss et al. 2012). 
Among larger animals, the physiology of the porcine skin 
closely resembles that of human (Ashara and Shah 2016; 
Grada et al. 2018; Tsai et al. 2019; Vodička et al. 2005). 
Yet, many driveline studies employ goats or sheep that 
enable driveline stabilization onto a minimally perturb-
ing dorsal site which is further protected by specialized 
protective vests and amenable breeding conditions (Carney 
et al. 2009; Großhauser et al. 2015; Lee et al. 2013). In 
conclusion, the selection of different skin models is well 
correlated with the leading pre-clinical questions and the 
most recent standards for animal welfare. In this direc-
tion, the rigorous pre-clinical assessment of DLIs shall put 
together a combinatorial strategy to harness the distinct 
advantages of more than one category of the aforemen-
tioned skin models.

Foreign body reaction, lessons from the past

A critical condition for the successful incorporation of IMDs 
in a host organism is related with their capacity to minimize 
FBR. This is a common biological challenge that escalates to 
the assembly of fibrotic capsules around artificial materials 
comprising IMDs (Anderson et al. 2008). Fibrotic capsules 
resemble granulation tissues with immature vascularization, 
which may eventually impede the electromechanical per-
formance of IMDs. For instance, capsule formation around 
CIEDs attenuate signal transmission in the cardiac tissue, 
leading to increased power consumption or even local over-
heating (Dvorak et al. 2012; Li et al. 2020). To combat this 
problem, previous studies modified implanted devices with 
different grades of biochemical molecules (Liu et al. 2008; 
Park et al. 2019; Weigel et al. 2018). Consistent to that, 
novel biomaterials enable the design of device sleaves that 
prevent FBR (Davenport Huyer et al. 2020; Robotti et al. 
2020), alleviating the mismatch between implants and the 
tissue microenvironment.

Moreover, the size, microarchitecture, and mechani-
cal properties of implanted objects constitute additional 
design parameters to mediate the extend of FBR (Helton 
et al. 2011). For instance, implants of smaller size and lower 
elastic modulus demonstrate significantly less FBR (Sanders 

et al. 2002). Likewise, textured surfaces have been shown to 
weaken FBR, as validated by the formation of thinner and 
less dense fibrotic capsules (Johansson et al. 2009; Picha and 
Drake 1996; Ward et al. 2002). These findings underline a 
mechanistic correlation between the material properties of 
the implanted objects and the extent of FBR, that shall be 
harnessed to design new power drivelines with only benign 
FBR.

Alternative solutions for high‑power 
transfer

Wireless power transfer

Wireless power transfer has the potential to solve the prob-
lem of DLIs. With this ambitious goal, the transcutaneous 
energy transfer systems (TETS) are widely investigated 
with the aim of leading to fully implanted and infection-
free LVADs (Fig. 3a). In one of the first cases that combined 
TETS in LVAD implantation, the transfer of power was car-
ried out by induction coupling between an external and an 
implanted coil, after the contactless transmission of direct 
current through the physiological barrier of the human skin 
(Leuck 2015; Mehta et al. 2001). Still, formidable techni-
cal challenges render wireless solutions unsuitable for the 
hazard-free support of LVADs.

TETS intolerance to coil misalignment burdens their 
systematic application to a patient population with varying 
body types (El-Banayosy et al. 2003; Waters et al. 2014). 
To tackle this challenge, recent efforts developed free-range 
resonant electrical energy delivery (FREE-D) systems that 
employ magnetic resonance to successfully transmit power 
in both short- and long-range distances (Waters et al. 2018). 
In a small-scale clinical trial, the use of coplanar energy 
transfer (CET) proved to be feasible for powering continuous 
flow LVADs (Pya et al. 2019). Despite the overall progress, 
the implementation of a wireless-based solution for power 
transfer in LVADs is far from becoming part of the clinical 
routine. In this direction, new wireless solutions against tis-
sue overheating and fibrotic responses will be essential to 
avoid power outage and tissue damage with life threatening 
consequences (Letzen et al. 2018).

Physical and biological functionalization of power 
drivelines

The effects of percutaneous drivelines on the skin tissue may 
well reflect the bi-directional communication between skin 
cells and the material properties of LVAD drivelines. This 
hypothesis is supported by an inherent cellular mechanism 
which integrates mechanical and biochemical cues of the 
extracellular environment into downstream signals of tissue 
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repair (Tschumperlin et al. 2018). Up to date, biomateri-
als with controlled chemistry, stiffness, shape, and surface 
topography have been successfully formulated to coordinate 
cellular responses in wound healing and tissue regeneration 
(D’Ovidio et al. 2019; Guimarães et al. 2020; Kaylan et al. 
2017; Kourouklis et al. 2014; Li et al. 2017; Murray et al. 
2019; Ragelle et al. 2018; Rahmati et al. 2020; Tylek et al. 
2020). In the same context, the material properties of the 
drivelines may interfere with the cellular functions in the 
proximal skin tissue. Thus, the design of drivelines with 
controlled presentation of biochemical and biophysical cues 
(Fig. 3b) offers an alternative strategy for instructing tissue 
responses that reduce the chance of DLI.

Previous clinical studies showed that the smooth silicone 
jacket of HeartMate II drivelines attaches more firmly onto 
the wound compared to porous velour (McCandless et al. 
2015), suggesting that the physical characteristics of LVAD 
drivelines can influence their interaction with injured skin. 
In contrast, the incorporation of porous features on the sur-
face of exploratory percutaneous devices corresponded to 
enhanced dermal and epidermal incorporation without evi-
dence of infection in mouse studies (Fukano et al. 2010). 
Interestingly, mock drivelines modified with a fibrous sur-
face demonstrated strengthened adhesion with human skin 
equivalents (HSE) (Bolle et al. 2020a). For the same in vitro 
set up, however, the percutaneous implantation of the fibrous 
mock drivelines into HSE did not inhibit downward epider-
mal growth (marsupialization) which is a histological con-
dition connected with infected percutaneous LVAD drive-
lines. Apart from the surface features, the size and stiffness 
of the drivelines may also affect the progression of DLIs. 

In a relevant clinical study, the thinner and more compli-
ant drivelines, as indicated by the force load (N) required 
to push a gauge to a certain distance (5 mm) against the 
drivelines, restricted complications related to percutaneous 
implantation (Imamura et al. 2017). Specifically, HeartMate 
II drivelines (Diameter (D) ~ 6 mm, 3 N) induced fewer 
cases of DLIs compared to the larger and stiffer drivelines 
of DuraHeart (D ~ 9 mm, 40 N) and EVAHEART (D ~ 
9.5 mm, 50 N).

In a similar context, the biological functionalization of 
drivelines aims to eradicate DLIs through increased biologi-
cal compliance. This goal may  be achieved by attaching 
extracellular and cellular components on the surface of the 
drivelines, recapitulating critical features of skin architecture 
(Debels et al. 2015; Sheikholeslam et al. 2018). For instance, 
the biochemical functionalization of 2-dimensional (2D) sili-
con and velour substrates with type I collagen is shown to 
reduce non-specific protein adsorption and enhance fibro-
blast adhesion (Hussain et al. 2016), indicating potential 
benefits from the dermal functionalization of LVAD drive-
lines. Similarly, fibroblast seeding on top of 3-dimensional 
(3D) mock drivelines promoted upward epidermal growth, 
inhibiting bacterial migration in HSE (Bolle et al. 2020a, 
b). Overall, the strategy of driveline functionalization can 
exploit previously recorded cell-material relationships to 
expedite the design of power transfer systems with enhanced 
biocompatibility and infectious-resistant effects.

Fig. 3  New solutions for power transfer into the human body with 
the aim to eliminate the problem of infection. (a) TETS, (b) drive-
line modification with physical and biological features for enhanced 
antibacterial properties and integration with skin [inner image depicts 
anti-fibrotic biosynthesized cellulose (Robotti et al. 2020)], (c) lami-

nated flexible electronics on epidermal tissue, (d) conductive bio-
logical hydrogels with controlled cellular composition and conductive 
particles, and (e) new systems of conductive skin accommodating 
highly conducting metallic wires in 3D skin substitutes. The cartoons 
were created with Biorender.com
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Engineering new systems of conductive skin

A significant stepping-stone towards the next generation of 
power transfer systems will be the design of highly con-
ductive elements within scaffolds of increased biological 
mimicry. Yet, these devices will not only incur the high 
risk of infection and FBR, but that of the electrical hazard 
against fragile biological parts as well. Currently developed 
conductive systems bear properties that partially protect 
them against similar problems. For instance, although flex-
ible material systems, the so called “electronic skin”, may 
serve as well-laminated power transfer systems (e.g., coil, 
solar panels, piezoelectric generators) onto the human skin 
(e-skin, Fig. 3c), the uncertain biological compatibility and 
low-power characteristics (μWatts–mWatts) restrain their 
use in LVAD applications (García Núñez et al. 2019; Ham-
mock et al. 2013; Kim et al. 2011; Li et al. 2016; Zhu et al. 
2020).

A different approach constitutes from composite systems 
that blend high-conductivity constituents with biopolymers 
to engineer tissue scaffolds with improved electrical prop-
erties (Fig.3d) (Guo and Ma 2018; Min et al. 2018; Walker 
et al. 2019). Following this strategy, the addition of carbon 
nanotubes and polymer nanofibers in cellular scaffolds has 
been shown to increase conductivity without disrupting 
cellular viability (MacDonald et al. 2008; Sirivisoot et al. 
2014). Similarly, electrode embedment in conductive bio-
logical scaffolds enhanced both the electrical transmission 
and the anti-fibrotic responses (Cheong et al. 2014). How-
ever, in spite of the apparent biological affinity, the achieved 
conductivity (~10−1 S/m) remains significantly lower than 
that of metallic wires  (107–108 S/m) (Sirivisoot et al. 2014), 
dismissing the use of conductive hydrogels as power transfer 
systems in LVAD drivelines.

Conductive wires with controlled physical features

The different limitations associated with the use of drivelines 
in LVADs urge the design of new power transfer systems 
to support IMDs without the problem of DLIs. A potential 
prototype to limit DLIs as well as FBR shall involve the 
use of skin substitutes with individually incorporated metal-
lic wires (Fig. 3e). The novelty of our proposed solution 
is centered around the righteous selection and modification 
of the size and surface characteristics of conductive wires 
(i.e., material and topography). In particular, the proposed 
prototype aims to leverage the ability of the skin tissue to 
more effectively seal and heal around small size objects. 
Despite the limited amount of data on how the size of drive-
lines affects the incidence of DLIs (Imamura et al. 2017), 
small percutaneous objects have lower contact area with the 
abdominal wall limiting the progress of biofilm migration. 
In a similar context, thin, sub-millimeter sutures repair skin 

incisions without significant wound formation (Fig. 4a), 
while needles and implants of smaller diameter are also 
shown to reduce the underlying trauma and FBR (Helton 
et al. 2011). Driven by this evidence, we chose enameled 
copper wires with significantly smaller diameter (D = 0.2 
and D = 0.4 mm, Distrelec) compared to LVAD drivelines 
(D = 6 mm in HeartMate 3) as the main conductive part of 
our prototype (Fig. 3e). To the extent of our knowledge, this 
is the first time that a similar configuration of thin conduc-
tive wires is proposed as part of a power transfer system in 
IMDs, and LVADs in particular.

However, apart from the size, the chemical profile of the 
implanted objects may also lead to adverse complications, 
such as FBR (Anderson et al. 2008). Because silicone is a 
rather common material on the surface of medical devices 
(Curtis and Steichen 2020), we modified our conductive 
wires by adding an outer layer of silicone (Fig. 4b, c). Yet, 
silicone surfaces are vulnerable to fibrotic responses (Curtis 
and Steichen 2020). In effect of that, previous studies modi-
fied silicone surfaces with rational topographical details 
to regulate cell adhesion against fibrosis (Park et al. 2019; 
Robotti et al. 2018). Motivated by that, we pursued to obtain 
control over the surface topography of the conductive wires 
which due to their 3D geometry are not compatible to con-
ventional micropatterning techniques (Quist and Oscars-
son 2010). In return, we developed an innovative method 
of free-form topography to successfully introduce breath 
features by the condensation of water droplets on top of 
semi-cured silicone substrates (Fig. 4b, c) (Wu et al. 2021). 
In contrast with other methods for imprinting breath topog-
raphy (Kawano et al. 2013; Martínez-Campos et al. 2016), 
our strategy employs a solvent-free approach that obtains 
spatial profiles of different features (i.e., depth, diameter, and 
inter-space distance) on 0.2 mm and 0.4 mm wires, respec-
tively (Fig. 4d).

Furthermore, the small diameter of the metallic wires 
shall strongly reduce their flexural stiffness so to effectively 
protect the adjacent skin from external forces. On the other 
hand, lower stiffness entails the risk of larger mechanical 
movements by the LVAD drivelines at the exit site and the 
occasional destruction of their electrical insulation (Coyle 
et al. 2020). For this reason, we developed a customized 
protocol to assess the electrical resistance of the wires as a 
function of controllable mechanical deformation (Fig. 4e). 
In this test, the electrical current conducted from the buffer 
to the enameled wires shall be indicative of the underly-
ing insulation defects. Since the conducted current is lower 
than previously reported levels with hazardous effects on 
the human body (Fish and Geddes 2009), it suggests that 
the small diameter wires are eligible for further investiga-
tion for the generation of new power transfer systems. In 
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this direction, we also explored the biocompatibility of the 
wires through an established cytotoxicity assay, according 
which neurite growth of rat adrenal phaeochromocytoma 

cells (PC 12) correlates with cell apoptosis in vitro (Bernardi 
et al. 2017; Ferrari et al. 2010). Our findings demonstrate 
negligible changes on the length of neurites, suggesting 
the non-cytotoxic effects of the investigated wires (Fig. 5). 
Beyond the scope of this review, future studies shall proceed 

Fig. 4  Functionalization of thin 
conductive wires with selected 
physical characteristics. (a) 
Commercially available surgical 
sutures are eminent examples 
of percutaneous sub-millimeter 
objects with relatively bio-
compatible properties. From 
left to right: monofilament 
supramid (0.4 mm) and ethicon 
PDP 305 (0.3 mm) sutures. 
Ethicon VCP 215 (0.3 mm) is 
made of absorbable vicryl with 
distinct braided architecture 
for enhanced adhesion on the 
contacting tissue. Enameled 
conductive wires (W) with a 
diameter of (b) 0.2 mm and 
(c) 0.4 mm. Chemical modi-
fication with a silicone layer 
(WS). Physical modification 
with breath features (WST). (d) 
Diameter, depth, and inter-space 
distance of breath features in 
WST wires were captured by 
specialized confocal micros-
copy (von Petersdorff-Campen 
et al. 2021) and quantified by a 
custom-made MATLAB proto-
col (Wu et al. 2021). (e) Scheme 
of the electromechanical testing 
protocol for monitoring the 
insulation damage in response 
to the deformation of W, WS, 
and WST wires. P values indi-
cated for P < 0.05 (*), P < 0.01 
(**), P < 0.001 (***), and 
P < 0.0001 (****). Scale bars 
are 100 μm
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to a thorough characterization of the electromechanical and 
biological properties of the wires under environmental con-
ditions that resemble those of implanted LVAD drivelines.

Future outlook

The design of new models of conductive skin is expected to 
grow along with the need for more advanced clinical proto-
cols against DLIs. Apart from offering a potential solution 

Fig. 5  Enamel copper wires 
induce non-cytotoxic effects in 
in vitro culture. (a–d) Box-&-
Whisker plots for the neurite 
length (> 20 μm) grown by PC 
12 cells during co-culture with 
different wire conditions. For all 
the conditions P value > 0.05. 
(e,f) Representative pictures of 
neurites in PC 12 cells (black 
arrows). P values indicated 
for P < 0.05 (*), P < 0.01 (**), 
P < 0.001 (***), and P < 0.0001 
(****). Scale bars are 70 μm
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to power LVADs, the design of new systems of conductive 
skin may expand the capabilities of other life-supporting 
technologies, such as wearable artificial organs (Gura et al. 
2016; Lu et al. 2020). Since infection and FBR are major 
complications related with IMDs, the functional character-
istics of conductive skin shall work against these problems. 
In this direction, the progress of mechanobiology and tis-
sue engineering provides a guide to engineer systems of 
conductive skin with minimal tissue morbidity. Specific 
experimental efforts shall proceed with the formulation of 
3D skin substitutes that contain surface-functionalized con-
ductive wires (Fig. 3e) with the capacity to power IMDs 
without severe complications. The pre-clinical evaluation 
shall attest the effects of different conductive skin systems 
in host organisms that are suitable for exploratory LVAD 
studies. In addition, the use of dynamic bioreactors offers 
a powerful in vitro strategy to assess the performance of 
new systems of conductive skin under non-static conditions 
with controllable mechanical and biological signals (Wahl-
sten et al. 2021). Overall, the mechanobiology-directed 
design of conductive skin, in synergy with the development 
of complementary health technologies, has the potential to 
revolutionize the capabilities of IMDs and improve patient 
management against chronic diseases.
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